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Abstract
A useful kind of continuity of quantum states functions in asymptotic regime
is so-called asymptotic continuity. In this letter, we provide general tools for
checking if a function possesses this property. First we prove equivalence
of asymptotic continuity with so-called robustness under admixture. This
allows us to show that relative entropy distance from a convex set including
a maximally mixed state is asymptotically continuous. Subsequently, we
consider arrowing—a way of building a new function out of a given one.
The procedure originates from constructions of intrinsic information and
entanglement of formation. We show that arrowing preserves asymptotic
continuity for a class of functions (so-called subextensive ones). The result is
illustrated by means of several examples.

PACS number: 03.67.Mn

1. Introduction

One of basic issues of quantum information theory is to evaluate operational quantities such
as capacities of quantum (usual of teleportation) channel [1, 2] costs creating quantum states
under some natural constraints [3, 4], compression rates [5] or localizable information rates
[6, 7]. The quantities are usually defined in spirit of Shannon—in an asymptotic regime of
many uses of a channel or many copies of a state. Apart from such operational quantities one
also considers mathematical functions, that are expected to reflect somehow those features of
states or channels. To this end, one chooses functions that satisfy some requirements. For
example, most of entanglement measures are mathematical functions that do not increase under
local operations and classical communication [3, 8]. Other examples are correlation measures
(see, e.g., [9–12]). Such functions turn out to be very useful, as they often provide upper or
lower bounds for operational quantities in an asymptotic regime, the functions are especially
useful if they are asymptotically continuous. The prototype for asymptotic continuity is Fannes
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inequality [13] for von Neumann entropy S(�) = −tr � log �, which says that for any states �

and σ with ‖� − σ‖1 � 1/2 we have

|S(�) − S(ρ)| � ‖� − σ‖1 log d + η(‖� − σ‖1) (1)

where η(x) = −x log x, d is the dimension of the Hilbert space. The important feature of this
stronger form of continuity is that the right-hand side scales logarithmically with dimension of
the Hilbert space. This kind of inequality was first applied to the quantum information theory
in [14, 15] to provide a lower bound for compression rates of mixed signal states (interestingly,
the question of achievability of the bound is in general still open). Subsequently, it was applied
to entanglement theory [16] which leads, in particular, to methods of providing bounds for
distillable entanglement and entanglement cost [4, 17]. Asymptotic continuity has become an
important tool in proving irreversibility of pure states transformations (see [18] and references
therein).

In [19, 20] two measures of entanglement have been proven to satisfy Fannes-like
inequality (i.e. to be asymptotically continuous)—entanglement of formation EF [3] and
relative entropy of entanglement [21]. In [22] asymptotic continuity of conditional entropy
S(A|B) = S(�AB) − S(�B) has been proven, where the right-hand side depends only on the
dimension of system A. This allowed us to prove asymptotic continuity of third measure
of entanglement—squashed entanglement [23]. The importance of asymptotic continuity
was made even more transparent in [24] where it was shown that a convex and so-called
subextensive function, if not asymptotically continuous, behaves in a quite weird way: namely,
after removing one qubit, it can change at an arbitrarily large amount.

Clearly, it is very important to know whether a function is asymptotically continuous
or not. Yet it is usually rather a difficult task. The aim of this letter is to provide general
tools for checking asymptotic continuity. First, we show that the latter is equivalent to so-
called ‘robustness under admixtures’, i.e. a function is asymptotically continuous, if it does not
change too much under admixing any state with a small weight. Using it, we prove that relative
entropy distance from any convex set including a maximally mixed state is asymptotically
continuous, extending therefore the result of [20] where it was proven for compact and convex
sets.

Next, we consider a procedure, called arrowing, of building new functions out of given
functions. The procedure originates both from classical privacy theory [25, 26]—where the
prototype was so-called intrinsic information—as well as from entanglement theory, since
it includes as a special case the other procedure called convex roof [27], the prototype of
which was entanglement of formation [3]. Since arrowing is commonly used in different
contexts (see quite recent application [28]), it is important to be able to check the properties of
arrowed versions of different functions. We provide here a quite general result, showing that
for subextensive functions such a procedure preserves asymptotic continuity, i.e. if an original
function is asymptotically continuous, so is its ‘arrowed’ version. We then apply it to show
that some tripartite entanglement measure [18, 29] as well as so-called mixed convex roof of
quantum mutual information introduced in [25] are asymptotically continuous.

2. Basic definitions

In this section, we will introduce some definitions which we will use throughout this letter.

Set of states. A positive operator � ∈ S with tr � = 1, acting on Hilbert space H we will
call state. A set of all states will be denoted by S(H). (We will deal with finite-dimensional
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Hilbert spaces.) A state is called pure if it is of the form |ψ〉〈ψ | where ψ ∈ H. Otherwise it
is called a mixed state.

Von Neumann entropy S(�) for a state � is given by the following formula:

S(�) = −tr � log �. (2)

We use base 2 logarithm in this letter.

Relative entropy for states � and σ is defined as

S(�|σ) = tr � log � − tr � log σ. (3)

Trace norm of an operator A is given by

‖A‖1 = tr
√

AA† (4)

where A† stands for the Hermitian conjugation.

Measurement. We will consider measurements with a finite number of outcomes, represented
by finite sets of operators M = {Ai} satisfying

∑
i A

†
iAi = I . Slightly abusing terminology,

we will call the measurements POVMs (positive operator-valued measure).

Subextensivity. A function f : S(H) → R is subextensive if

∀� ∃M f (�) � M log d (5)

where M is a constant, d = dimH.

Definition 1. Let f be a real-valued function f : S(Cd) 	→ R and �1, �2 are the states acting
on Hilbert space Cd and ε = ‖�1 − �2‖1. Then a function is asymptotically continuous if it
fulfils the following condition

∀�1,�2 |f (�1) − f (�2)| � K1ε log d + O(ε), (6)

where K1 is a constant and O(ε) is any function, which satisfies the condition that O(ε)

converges to 0 when ε converges to 0 and depends only on ε. (In particular, it does not depend
on dimension.)

Definition 2. Let f be a real-valued function f : S(Cd) 	→ R and �1, �2 are states acting on
Hilbert space Cd . Then a function is robust under admixtures if

∀�1,�2∀δ>0|f ((1 − δ)�1 + δ�2) − f (�1)| � K2δ log d + O(δ) (7)

where K2 is a constant and O(δ) is any function, which satisfies the condition that O(δ)

converges to 0 when δ converges to 0 and depends only on δ. (In particular, it does not depend
on dimension.)

Remark. Note that usually for asymptotic continuity or robustness under admixtures we will
not require fulfilling conditions (6) and (7) for the whole range of ε or δ. We will rather restrict
to some limited subset of a positive real value of ε or δ (limited by 1 or 1

2 , for example).

3. Asymptotic continuity and robustness under small admixtures

In this section, we prove equivalence between asymptotic continuity and robustness under
admixtures of function. This is an extension of the result of [24], where it is proved that if a
function f , under admixtures, does not change more than a constant, and subextensive then it
is also asymptotically continuous.
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Proposition 1. Let f be a function f : S(Cd) 	→ R, then the function is asymptotically
continuous if only if it is robust under admixtures.

Remark. This proposition can also be proved when we do not require ‘Lipschitz-type’
continuities, but rather ‘Cauchy-type’ ones (see the appendix).

Proof. ‘⇒’ We assume that the function is asymptotically continuous. This implies

|f ((1 − δ)�1 + δ�2) − f (�1)| � K1‖�1 − ((1 − δ)�1 + δ�2)‖1 log d

+ O(‖�1 − ((1 − δ)�1 + δ�2)‖1) = K1‖δ�1 − δ�2‖1 log d

+ O(‖δ�1 − δ�2‖1) � 2K1δ log d + O(2δ). (8)

Let us take K2 = 2K1. Then

|f ((1 − δ)�1 + δ�2) − f (�1)| � K2δ log d + O(δ). (9)

‘⇒’
We will base on the result of [22] (see also [30]), which can be viewed as a sort of generalized
Tales theorem,

∀�1,�2 ∃σ,γ1γ2 σ = (1 − ε)�1 + εγ1 = (1 − ε)�2 + εγ2 (10)

where �1, �2, σ, γ1, γ2 are states acting on the Hilbert space and ε = ‖�1 − �2‖1. Using it we
obtain

|f (�2) − f (�1)| � |f (�2) − f (σ)| + |f (σ) − f (�1)| = |f ((1 − ε)�2 + εγ2) − f (�2)|
+ |f ((1 − ε)�1 + εγ1) − f (�1)| � 2K2ε log d + 2O(ε) (11)

so that we can take K1 = 2K2. Then

|f (�2) − f (�1)| � K1ε log d + O(ε). (12)

This ends the proof. �

3.1. Application: asymptotic continuity of relative entropy distance from convex set of states

In [20] it was shown that so-called relative entropy distance from a convex, compact set
including maximally state I

d
is asymptotically continuous. The proof was quite complicated.

Here, on the basis of proposition 1, we present a more general result, where we do not require
compactness of the set. Moreover our proof is more straight.

Relative entropy of distance ED
R is defined as follows

ED
R (�) = inf

σ∈D
S(�|σ) (13)

where D is a convex set of states including a maximally mixed state, � ∈ Cd .
We start with the following lemma:

Lemma 1. Relative entropy of distance ED
R fulfils the following condition∣∣ED

R ((1 − ε)� + εσ ) − ED
R (�)

∣∣ � 2ε log d + H(ε) (14)

where H(ε) = −ε log ε − (1 − ε) log(1 − ε).

Proof. First we show that ED
R satisfies the following inequality:∑

k

pkE
D
R (�k) − ED

R

(∑
k

pk�k

)
� S

(∑
k

pk�k

)
−

∑
k

pkS(�k). (15)
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This fact was shown for relative entropy distance from separable states in [31], but it is also
true for relative entropy distance from any convex set of states. Here we repeat this proof for
ED

R defined in (13). Note that for � = ∑
k pk�k

S (�|σ) = S

(∑
k

pk�k|σ
)

= tr

(∑
k

pk�k log

(∑
k

pk�k

)
−

∑
k

pk�k log σ

)

= tr

(∑
k

pk(�k log �k − �k log σ + �k log � − �k log �k)

)
=

∑
k

pkS(�k|σ) +
∑

k

pkS(�k) − S(�). (16)

Let σ ∈ D be a state such that ED
R = S(�|σ) − δ. Then we can rewrite

ER(�) =
∑

k

pkS(�k|σ) +
∑

k

pkS(�k) − S(�) − δ

�
∑

k

pkER(�k) +
∑

k

pkS(�k) − S(�) − δ. (17)

Since by the definition of ED
R δ can be arbitrarily small, we obtain∑

k

pkER(�k) − ER

(∑
k

pk�k

)
� S

(∑
k

pk�k

)
−

∑
k

pkS(�k). (18)

We use also the fact that [32]

S

(∑
k

pk�k

)
�

∑
k

pkS(�k) + H({pk}) (19)

and that relative entropy distance is a convex function, which is implied by the convexity of
quantum relative entropy in two arguments. Also note that ER is bounded by log d because D
includes a maximally mixed state (so ER � S(�| I

d
) = log d − S(�) � log d). Then we have

|ER((1 − ε)� + εσ ) − ER(�)| = |ER((1 − ε)� + εσ ) − (1 − ε)ER(�) − εER(σ)

− εER(�) + εER(σ)| �= |ER((1 − ε)� + εσ ) − (1 − ε)ER(�) − εER(σ)|
+ ε|ER(�)| + ε|ER(σ)| = (1 − ε)ER(�) + εER(σ) − ER((1 − ε)� + εσ )

+ ε|ER(�)| + ε|ER(σ)| � S((1 − ε)� + εσ ) − (1 − ε)S(�) − εS(σ )

+ ε log d + ε log d � H(ε) + 2ε log d (20)

This ends the proof. �
Remark. Note that the main feature of ED

R responsible for robustness under admixtures, is
the following:

(1) ED
R satisfy the following inequality:∣∣∣∣∣ER

(∑
k

pk�k

)
−

∑
k

pkER(�k)

∣∣∣∣∣ � H({pk}). (21)

(2) ED
R is bounded by log d.

Lemma 2. Relative entropy of distance ER is asymptotically continuous i.e.

|ER(�) − ER(σ)| � 4ε log d + 2H(ε) (22)

where H(ε) = −ε log ε − (1 − ε) log(1 − ε) and ε = ‖� − σ‖1.

Proof. ER is the robust under admixtures so under proposition 1 it is also asymptotically
continuous. �
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4. Asymptotic continuity of functions built by ‘arrowing’

In this section, we consider ‘arrowing’—a construction that from given function f creates
a new function denoted by f↓. The definition is motivated by intrinsic information and its
generalizations [33–35]. The new function f↓ is defined on an enlarged system as follows:

Definition 3. For any function f : S(HX) → R acting on states of system X, we define the
function f↓ : S(HX ⊗ HE) → R as follows

f↓(ρXE) = inf
{Ai }

∑
i

pif
(
ρi

X

)
(23)

where infimum is taken over all finite POVMs {Ai} performed on system E and

pi = tr(IX ⊗ Ai)ρXE, ρi
X = 1

pi

trE
(
IX ⊗ AiρXEIX ⊗ A

†
i

)
, (24)

i.e. pi is a probability of outcome i, and ρi
X is the state of system X given that outcome i was

obtained.

Remark. We can define a modified version of the previous function as follows:

Definition 4. For any function f : S(HX) → R acting on states of system X, we define
function f↑ : S(HX ⊗ HE) → R as follows

f↑(ρXE) = sup
{Ai }

∑
i

pif
(
ρi

X

)
(25)

where supremum is taken over all finite POVMs {Ai} performed on system E and

pi = tr(IX ⊗ Ai)ρXE, ρi
X = 1

pi

trE
(
IX ⊗ AiρXEIX ⊗ A

†
i

)
(26)

i.e. pi is a probability of outcome i, and ρi
X is the state of system X given that outcome i was

obtained.

All features of f↓ presenting in this letter are also valid for function f↑.
We have the following lemma, which is proven in section 9.

Lemma 3. The infimum in the definition of f↓ is achievable.

We will show in this section that the asymptotic continuity and subextensivity of function
f implies asymptotic continuity of f↓. Thus in a sense, arrowing preserves asymptotic
continuity. Let us stress that all the involved systems are finite dimensional.

We will need the following definition:

Definition 5. Given a function f defined on states of a system X, we define its conditional
version F for a quantum-classical state of a system XE

ρ
qc
XE =

∑
i

piρ
i
X ⊗ |i〉E〈i| (27)

as follows:

F
(
ρ

qc
XE

) =
∑

i

pif
(
ρi

X

)
. (28)

If the quantum-classical state was obtained from state ρXE by a POVM M performed on
system E we will also use notation F(ρXE,M) ≡ F

(
ρ

qc
XE

)
.
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Let us now present the main result of this section.

Proposition 2. Let f be a function defined on states of system X, which is subextensive and
asymptotically continuous. Then function f↓ is also asymptotically continuous. Moreover, the
constant under asymptotic continuity condition depends only on the dimension of system X.

Proof. Let �XE and σXE be states and ε = ‖�XE −σXE‖1. Let M� = {
A

�

k

}
and Mσ = {

Aσ
k

}
be the optimal measurements for ρ and σ respectively (i.e. those achieving infimum in the
definition of f↓) where

∑
k A

�

k
†A

�

k = IE,
∑

k Aσ
k
†Aσ

k = IE . For measurement Mσ , let pk and
qk be probabilities of outcomes if a state was � and σ respectively. The resulting states on
system X, given that the outcome was k, we will denote by �k and σk respectively. Due to
asymptotic continuity (see section 2) we assume that

|f (�XE) − f (σXE)| � Kε log dX + O(ε) (29)

and due to subextensivity

|f (ρ)| � M log dX (30)

for any state ρ on system X, where dX = dimHX and M and K are the constants. Then we
have the following estimate

f↓(�XE) − f↓(σXE) = F(�XE,M�) − F(σXE,Mσ ) � F(�XE,Mσ ) − F(σXE,Mσ )

=
∑

k

pkf
(
�k

X

) −
∑

k

qkf
(
σ k

X

)
�

∣∣∣∣∣∑
k

pkf
(
�k

X

) −
∑

k

qkf
(
σ k

X

)∣∣∣∣∣
=

∣∣∣∣∣∑
k

pkf
(
�k

X

) − pkf
(
σ k

X

)
+ pkf

(
σ k

X

) − qkf
(
σ k

X

)∣∣∣∣∣
�

∑
k

(
pk

∣∣f (
�k

X

) − f
(
σ k

X

)∣∣ + |pk − qk|
∣∣f (

σ k
X

)∣∣)
�

∑
k

pkεkK log dX + εM log dX + O(ε) � K1ε log dX + O(ε) (31)

where εk = ∥∥�k
X − σ k

X

∥∥
1 and K1 = 2K + M . The last two steps of the above estimate are

implied by asymptotic continuity, subextensivity of the function f and the following facts
(see [23]): ∑

k

|pk − qk| � ε (32)

and ∑
k

pkεk � 2ε. (33)

The inequality (32) we get via the following estimate∑
k

|pk − qk| =
∥∥∥∥∥∑

k

pk|k〉〈k| −
∑

k

qk|k〉〈k|
∥∥∥∥∥

1

�
∥∥∥∥∥∑

k

pk�
k
X ⊗ |k〉〈k| −

∑
k

qkσ
k
X ⊗ |k〉〈k|

∥∥∥∥∥
1

= ‖(IX ⊗ 	σ)�XE − (IX ⊗ 	σ)σXE‖1 � ‖�XE − σXE‖1 = ε, (34)
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where 	σ is a completely positive map induced by POVM Mσ as follows:

	σ(·) =
∑

k

tr
[
Aσ

k (·)Aσ
k
†]|k〉〈k|. (35)

We have used here the fact that trace norm does not increase under completely positive
trace preserving maps [36].

The inequality (33) is proven as follows:

ε = ‖�XE − σXE‖1 �
∑

k

∥∥pk�
k
X ⊗ |k〉〈k| − qkσ

k
X ⊗ |k〉〈k|∥∥1 =

∑
k

∥∥pk�
k
X − qkσ

k
X

∥∥
1

�
∑

k

(∥∥pk�
k
X − pkσ

k
X

∥∥
1 − ∥∥pkσ

k
X − qkσ

k
X

∥∥
1

)
=

∑
k

pk

∥∥�k
X − σ k

X

∥∥
1 −

∑
k

|pk − qk|) �
∑

k

pkεk − ε. (36)

Analogously we can show that

f↓(σXE) − f↓(�XE) = F(σXE,Mσ ) − F(�XE,M�)

� F(σXE,M�) − F(�XE,M�) � K1ε log dX + O(ε). (37)

Thus we obtain

|f↓(�XE) − f↓(σXE| � K1ε log dX + O(ε). (38)

This ends the proof. �

Remark. In the proof we have used the fact that the infimum in the definition of f↓ is
achievable. However it is not essential: the proof that does not use it is very similar to the
above one.

Finally, consider modification of the function f↓, where we do not optimize over all
POVMs, but only over complete POVMs, for which the operators Ak are of rank one.

Definition 6. For any function f : S(HX) → R acting on states of system X, we define
function f

cpl

↓ : S(HX ⊗ HE) → R as follows

f
cpl

↓ (ρXE) = inf
{Ai }

∑
i

pif
(
ρi

X

)
(39)

where infimum is taken over all finite POVMs {Ai} with elements Ai being of rank one. The
notation is the same as in definition 3.

Again, the infimum in the above definition can be achieved; see section 9. We then obtain

Proposition 3. Let f be a function defined on states of system X, which is subextensive
and asymptotically continuous. Then function f

cpl

↓ is also asymptotically continuous.
Moreover, the constant under asymptotic continuity condition depends only on the dimension of
system X.

The proof is analogous to the proof of proposition 2.
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5. Applications

5.1. Measure of classical correlation C←

This proposition implies asymptotic continuity of measure of classical correlation C← defined
as follows [9]:

C←(ρAB) = max
B

†
i Bi

S(ρA) −
∑

i

piS
(
ρi

A

)
(40)

where B
†
i Bi is a POVM performed on subsystem B, ρi

A = trB
(
I ⊗ BiρABI ⊗ B

†
i

)/
pi is the

remaining state of A after obtaining the outcome i on B, and pi = trAB

(
I ⊗ BiρABI ⊗ B

†
i

)
.

Note that we can rewrite C← as

C←(�AB) = max
B

†
i Bi

∑
i

pi

(
S

(∑
i

pi�
i
A

)
− S

(
�i

A

))
. (41)

So C← is a kind of function built by ‘arrowing’, where f : S(HA) → R acting on states of
system A is of the form

f
(
�i

A

) = S

(∑
i

pi�
i
A

)
− S

(
�i

A

)
. (42)

The function f is asymptotically continuous, because entropy von Neumann S possess this
feature. So asymptotic continuity of quantity C← follows from proposition 2.

5.2. Intrinsic conditional information

Consider the following function called intrinsic conditional information: I (X;Y ↓ E) [26]
between X and Y given E defined as

I (X;Y ↓ E) = inf
PĒ|E

I (X;Y |Ē) = inf
PĒ|E

∑
e

p(ē)I (X;Y |Ē = ē) (43)

where PĒ|E is a classical channel, I (X;Y |Ē = ē) is the mutual information between X and Y
given Ē = ē and p(ē) is the probability that we have outcome ē on subsystem Ē. The quantity
I (X;Y |Ē) = ∑

e p(ē)I (X;Y |Ē = ē) is called conditional information. It is known [37] that
infimum in the definition of intrinsic conditional information is achievable. It is enough to
take minimum over PĒ|E with the system Ē of size of E.

One easily finds that the intrinsic information is a particular case of ‘arrowing’. Indeed,
for a given classical channel PĒ|E with conditional probabilities {pē|e} we consider POVM
given by Kraus operator Aē = ∑

e

√
pē|e|e〉〈e|. Now, if we embedded in a natural way our

distribution into set of quantum states, then we see that definition 3 reproduces the above
quantity.

If we note that the mutual information itself is asymptotically continuous (it is a sum of
entropies, each of them being asymptotically continuous due to Fannes inequality (1)), then
we will see that the asymptotic continuity of intrinsic conditional information follows from
our theorem.

6. Convex roof functions

Here we present asymptotic continuity of functions constructed from other asymptotically
continuous function f by means of convex roof [27]. We will distinguish between pure
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and mixed convex roofs. The pure convex roof is the generalization of the definition of
entanglement of formation EF given in [3]. It was proposed and investigated in [27] and called
there just a convex roof.

6.1. Pure convex roof

Definition 7. For a function f defined on pure states its pure convex roof f̂ is a function
defined on all states, given by

f̂ (�) = inf
{pk,ψk}

∑
k

pkf (ψk) (44)

where infimum is taken over all finite pure ensembles {pk, ψk}, satisfying � = ∑
pk|ψk〉〈ψk|.

It is useful to represent a convex roof in a different way (cf [19]), to make explicit, that
operation of a pure convex roof is actually arrowing. Indeed, for any state � acting on Hilbert
space HX of dimension dX we can construct its purification i.e. pure state ϕ� acting on Hilbert
space HX ⊗ HE (with dimHE = dimHX) such that

trHanc
ϕ� = �. (45)

Moreover for any pure decomposition of �, given by {pk, ψk} there exists a complete POVM
on Hanc which gives such an ensemble on system X, and vice versa: any POVM gives rise to
some pure decomposition.

Then we can rewrite f̂ as an infimum over measurements M

f̂ (�) = inf∑
pk |ψk〉〈ψk |=�

∑
k

pkf (ψk). (46)

Consequently, we have

f̂ (�X) = f
cpl

↓
(
ϕ

�

XE

)
(47)

where the equality holds for arbitrarily fixed purification ϕ
�

XE of the state �X. Having rewritten a
pure convex roof in terms of an arrowed function, we can easily prove its asymptotic continuity,
by use of proposition 2.

Proposition 4. Let f be a function, which is subextensive and asymptotically continuous.
Then its convex roof f̂ is also asymptotically continuous.

Proof. We will use following inequalities [38]

1 − F(�, σ ) � 1
2‖� − σ‖1 �

√
1 − F(�, σ ) (48)

where F(�, σ ) = √√
�σ

√
� is the fidelity [39, 40]. The fidelity can be also expressed as

follows

F(�, σ ) = sup |〈ψ�|ψσ 〉| (49)

where supremum is taken over all ψ� and ψσ which are purifications of states � and σ . The
supremum is achievable.

Consider now arbitrary states � and σ let ε = ‖�−σ‖1. We want to estimate f̂ (�)−f̂ (σ ).
Since the representation (47) does not depend on the choice of purification, we take such
purifications ψ� and ψσ , that

F(�, σ ) = F(ψ�,ψσ ). (50)
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Then we have

‖|ψ�〉〈ψ�| − |ψσ 〉〈ψσ |‖1 � 2
√

1 − F(ψ�,ψσ ) = 2
√

1 − F(�, σ ) � 2
√

‖� − σ‖1/2 =
√

2ε.

(51)

Since we assume that f is asymptotically continuous and subextensive, we can use
proposition 2 to get

|f̂ (�) − f̂ (σ )| = ∣∣f cpl

↓ (ψ�) − f
cpl

↓ (ψσ )
∣∣ � K

√
2ε log dX + O(

√
2ε) (52)

This ends the proof. �

Remark. Note that however we have here
√

2ε instead of ε, but we think that it does not
change the essence of the condition referring asymptotic continuity.

7. Mixed convex roof

Analogously to a pure convex roof we can define a mixed convex roof.

Definition 8. Let f be a function and � be a state then we can define a function mixed convex
roof f

�
as follows

f
�

(�) = inf
{pk,�k}

∑
k

pkf (�k) (53)

where infimum is taken over all ensembles {pk, �k}, where � = ∑
pk�k .

Similarly as in the case of a pure convex roof we can show that

f
�

(�X) = f↓
(
ψ

�

XE

)
(54)

where, again, ψ
�

XE is arbitrarily fixed purification of �X.
Therefore, with an analogous proof as that of proposition 4, we obtain

Proposition 5. Let f be subextensive and an asymptotically continuous function then the
function mixed convex roof f

�
is also asymptotically continuous.

8. Applications

8.1. Pure convex roof of measure of entanglement for tripartite pure states

Consider the quantity E [31] which is equal to the sum of measure of entanglement for a
bipartite state applied to the subsystem of a tripartite state:

E(�ABC) = ER(�AB) + S(�C) (55)

where S is the von Neumann entropy and �AB = trC�ABC, �C = trAB�ABC and ER is relative
entropy distance from a set of separable states. Now, we can consider a pure convex roof of
the function E as

Ê(�ABC) = inf
�ABC=�pk |ψk〉<ψk |ABC

∑
k

pkE
(∣∣ψk

ABC

〉)
. (56)

Note that E is subextensive and asymptotically continuous because relative entropy distance
and entropy possess these features. Thus proposition 4 implies that the convex roof of this
function Ê is also asymptotically continuous.
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8.2. Entanglement of formation

Proposition 4 implies asymptotic continuity of entanglement of formation EF (which was first
shown in [41]) defined as [3]

EF(�AB) = inf
�AB=�pk |ψk〉〈ψk |

∑
k

pkSA(|ψk〉) (57)

where SA is a von Neumann entropy of subsystem A of state. In the original definition,
infimum is taken over all pure ensembles, but note that in this case infimum over all ensembles
reduces to infimum over pure ensembles. Thus

EF(�AB) = inf
�AB=�pk�k

∑
k

pkSA(�k). (58)

This is implied by the concavity of von Neumann entropy:∑
k

pkSA(�k) =
∑

k

pASA

(∑
i

qk
i

∣∣ϕk
i

〉〈
ϕk

i

∣∣)
�

∑
k

pk

∑
i

qk
i SA

(∣∣ϕk
i

〉) =
∑
k,i

pkq
k
i SA

(∣∣ϕk
i

〉)
. (59)

So for every mixed ensemble we can find a pure ensemble which gives no greater value of
function EF than a mixed ensemble.

8.3. Pure and mixed convex roofs of mutual information

Now, we show the example of a function for which pure and mixed convex roofs are not equal
to each other. Consider the following functions:

ÎM(�AB) = inf
�AB=�pk |ψk〉〈ψk |

∑
k

pkIM(|ψk〉) (60)

IM

�
(�AB) = inf

�AB=�pk�k

∑
k

pkIM(�k) (61)

where IM is mutual information IM = SA(�AB) + SB(�AB) − S(�AB). In our terminology,
the functions are pure and convex roofs of quantum mutual information. The second one was
introduced in [25]. Note that for a pure convex roof we have

ÎM(�AB) = 2 inf
�AB=�pk |ψk〉〈ψk |

∑
k

pkSA(|ψk〉) = 2EF(�AB). (62)

Let �as be an antysymmetric state:

�as = 1

d2 − d
(I − V ) (63)

where V is a unitary flip operator V acting on Hilbert space Cd ⊗ Cd system defined by
V φ ⊗ ϕ = ϕ ⊗ φ. We know that [42]

EF(�as) = 1. (64)

So ÎM(�as) = 2. Then we have the following inequality:

IM

�
(�as) � IM(�as) = 2 log d − S(�as) = log

2d

d − 1
. (65)

So for d � 3 we have that IM

�
(�as) �= ÎM(�as).
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9. Achieving infimum in the definition of arrowing

We prove that in the definition of arrowing the infimum is achievable, so that it can be replaced
by minimum. First we prove the following lemma.

Lemma 4. Let {pi} be a probability distribution; then any convex combination
∑

i pixi ,
where xi = (�i, f (�i)), equal to

∑
pi(�i, f (�i)), can be written as a convex combination∑

qi(�i, f (�i)) consisting of n + 1 (or less) ingredients, where n is a dimension of space on
which xi is acting. So∑

i

pi�i =
n+1∑
i=1

qi�i and
∑

i

pif (�i) =
n+1∑
i=1

qif (�i). (66)

Proof. Let f̃ = ∑
i pif (�i) where � = ∑

i pi�i is a state acting on Hilbert space H. Let
xi = (�i, f (�i)) be a point from a convex set S = co(�i, f (�i)). Then

(�, f̃ ) =
(∑

i

pi�i,
∑

i

pif (�i)

)
=

∑
i

pi(�i, f (�i)) ∈ S. (67)

Using Caratheodory’s theorem, we have that there exists such a set of probability distributions
consisting of n + 1 or less elements that

(�, f̃ ) =
∑

i

qi(�i, f (�i)). (68)

So � = ∑
i qi�i and f̃ = ∑

i qif (�i). This ends the proof. �

Now, we use above lemma to prove that infimum in the function f↓(�XE) is achievable.
Let ψAXE be a purification of state �XE . Then if we make measurement M on subsystem
E we get ensemble

{
pi, �

AX
i

}
on subsystem AX. Let us define function f̃ such that for any

given function f

f̃
(
�AX

i

) = f
(
�X

i

)
(69)

where �X
i = trA�AX

i . Then

f↓(�XE) = inf
M

∑
i

pif
(
�X

i

) = inf
M

∑
i

pi f̃
(
�AX

i

)
. (70)

Note that for the function f̃ and state ψAXE we can define

f↓(ψAXE) = inf
M

∑
i

pi f̃
(
�AX

i

)
(71)

where we treat subsystem AX as a subsystem and E as a second. Note also that

f↓(ψAXE) = inf
{pi ,�

XE
i }

∑
i

pi f̃
(
�AE

i

)
(72)

because we can always find such a measurement made on subsystem E of state ψAXE , which
give us ensemble

{
qi, �

AX
i

}
.

Then using lemma 4 we know that there exists the other finite ensemble
{
qi, �

AX
i

}
such

that∑
i

pi�
AX
i =

d+1∑
i

qi�
AX
i and

∑
i

pi f̃
(
�AX

i

) =
d+1∑
i

qi f̃
(
�AX

i

)
(73)
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where d is the dimension of space on which
∑

i pi�
AX
i is acting. So for the function f↓(ψAXE),

infimum over measurement is effectively equal to infimum over a bounded finite set of
ensembles, so we have infimum over compact states. This implies that there exists an extremal
point belonging to S, so infimum for this function is achievable. If we are looking at formulae
(70) and (71) we can see that f↓(ψAXE) = f↓(�XE), which implies that for any given state
�XE function f↓(�XE) achieves infimum.
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Appendix

Now we will present the other version of proposition 1. We will use Cauchy-type conditions for
asymptotic continuity and show that they are also equivalent to robustness under admixtures.

Proposition 6. Let f be a function; then the following conditions are equivalent:

(1) ∀ε>0 ∃δ>0 ∀�,σ ‖� − σ‖1 � δ �⇒ |f (�) − f (σ)| � K1ε log d + O(ε) (A.1)

(2) ∀ε>0 ∃δ>0 ∀�,σ |f ((1 − δ)� + δσ ) − f (�)| � K2ε log d + O(ε), (A.2)

K1,K2 are constants and O(x) is any function that (i) converges to 0 when x converges to 0
and (ii) depends only on x (so in our particular case, it will not depend on the dimension).

Proof. ‘1 ⇒ 2’ Let ε > 0 be fixed then there exists such δ > 0 that for any states � and σ ,
the following conditions is fulfilled:

‖� − σ‖1 � δ �⇒ |f (�) − f (σ)| � K1ε log d + O(ε). (A.3)

Note that there exists such δ1 = δ
2

‖� − ((1 − δ1)� + δ1σ)‖1 = δ1‖� − σ‖1 � 2δ1 = δ, (A.4)

this implies that

|f ((1 − δ1)� + δ1σ) − f (�)| � K1ε log d + O(ε) = K2ε log d + O(ε). (A.5)

“2 ⇒ 1”
Let ε > 0 then there exists such δ > 0 that

∀�,σ |f ((1 − δ)� + δσ ) − f (�)| � K2ε log d + O(ε). (A.6)

Let �1, �2 be the states that

‖�1 − �2‖1 = δ1 � δ. (A.7)

Analogously to the proof of theorem 1

∃σ,γ1γ2 σ = (1 − δ1)�1 + δ1γ1 = (1 − δ1)�2 + δ1γ2 (A.8)

|f (�2) − f (�1)| � |f (�2) − f (σ)| + |f (σ) − f (�1)| = |f (�2) − f ((1 − δ1)�2 + δ1γ2)|
+ |f ((1 − δ1)�1 + δ1γ1) − f (�1)| � 2K2 log d + 2O(ε) = K1 log d + O(ε).

(A.9)

This ends the proof. �
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